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1. Introduction

Let F1, . . . , Ft be diagonal forms of degree k with real coefficients in s variables, and let τ
be a positive real number. The solubility of the system of inequalities

|F1(x)| < τ, . . . , |Ft(x)| < τ

in integers x1, . . . , xs has been considered by a number of authors over the last quarter-
century, starting with the work of Cook [9] and Pitman [13] on the case t = 2. More
recently, Brüdern and Cook [8] have shown that the above system is soluble provided that
s is sufficiently large in terms of k and t and that the forms F1, . . . , Ft satisfy certain addi-
tional conditions. What has not yet been considered is the possibility of allowing the forms
F1, . . . , Ft to have different degrees. However, with the recent work of Wooley [18], [20] on
the corresponding problem for equations, the study of such systems has become a feasible
prospect. In this paper we take a first step in that direction by studying the analogue of the
system considered in [18] and [20]. Let λ1, . . . , λs and µ1, . . . , µs be real numbers such that
for each i either λi or µi is nonzero. We define the forms

F (x) = λ1x
3
1 + · · ·+ λsx

3
s

G(x) = µ1x
2
1 + · · ·+ µsx

2
s

and consider the solubility of the system of inequalities

|F (x)| < (max |xi|)−σ1

|G(x)| < (max |xi|)−σ2
(1.1)

in rational integers x1, . . . , xs. Although the methods developed in Wooley [19] hold some
promise for studying more general systems, we do not pursue this in the present paper. We
devote most of our effort to proving

Theorem 1. Let s ≥ 13, and let λ1, . . . , λs and µ1, . . . , µs be real numbers such that λi/λj

and µi/µj are algebraic and irrational for some i and j. Then the simultaneous inequalities
(1.1) have infinitely many solutions in rational integers provided that

(a) F (x) has at least s− 4 variables explicit,
(b) G(x) has at least s− 5 variables explicit,
(c) the simultaneous equations F (x) = G(x) = 0 have a non-singular real solution, and
(d) one has σ1 + σ2 < 1

12
.
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If Θ(P ) denotes the number of solutions of (1.1) with x ∈ [1, P ]s, then our arguments will
in fact show that Θ(P ) À P s−5−σ1−σ2 as P → ∞. We also note for future reference that
condition (c) implies that the quadratic form G is indefinite, which is plainly a necessary
requirement for solubility.

When either F or G has a large number of zero coefficients, we can exploit results for a
single inequality to obtain

Theorem 2. Let λ1, . . . , λs and µ1, . . . , µs be real numbers. The simultaneous inequalities
(1.1) have infinitely many solutions in rational integers provided that

(a) F (x) has at least 7 variables explicit,
(b) G(x) has at least 5 variables explicit,
(c) the simultaneous equations F (x) = G(x) = 0 have a non-singular real solution, and
(d) one of the following holds:

(i) at least 4 of the λi are zero and max(σ1, σ2) ≤ 10−5, or
(ii) at least 7 of the µi are zero and σ1 ≤ 10−4.

We remark that condition (b) is not actually needed to prove the stated version of Theorem
2; however, the condition arises naturally in discussing possible improvements on condition
(d)(ii), so we state it for convenience.

In Section 2, we deduce Theorem 2 in an elementary manner from results on a single
Diophantine inequality. We also consider a refinement of condition (d)(ii) which would
follow from improvements in our understanding of cubic inequalities.

We then prove Theorem 1 in Sections 3, 4, and 5, using a two-dimensional version of the
Davenport-Heilbronn method. We show that when P is sufficiently large one has

Θs(P ) À
∫ ∞

−∞

∫ ∞

−∞
H(α)K(α) dα,

where H(α) is a suitable product of exponential sums (many of which we restrict to smooth
numbers) and K(α) is a product of kernel functions. We then dissect the plane in anal-
ogy with the one-dimensional Davenport-Heilbronn method. The success of our minor arc
analysis depends heavily on an estimate of Wooley [20] for the 10th moment of a certain
exponential sum over smooth numbers and also on a result of R. Baker [2] relating the size of
a certain exponential sum to the existence of good rational approximations to the coefficients
of its argument. The treatment of the major arc is essentially straightforward using the ideas
of Wooley [18].

Finally, in Section 6, we discuss the possibility of weakening some of the hypotheses
imposed in Theorems 1 and 2.

Throughout our analysis, implicit constants in the notations of Vinogradov and Landau
may depend on the coefficients λ1, . . . , λs and µ1, . . . , µs, the exponents σ1 and σ2, and also
on any parameters denoted by ε or δ.

The author wishes to thank Professor Trevor Wooley for suggesting this problem and for
providing much useful guidance and support.

2. Forms with Many Zero Coefficients

Here we prove Theorem 2 using results on a single inequality. We first consider the case
(d)(i). The argument is similar to that given in Lemmata 6.3, 6.4, and 6.5 of Wooley [18], but
it also incorporates the recent work of Baker, Brüdern, and Wooley [3] on cubic inequalities
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in 7 variables and makes use of a result of Birch and Davenport [4] on small solutions of
quadratic inequalities in 5 variables. We start with an analogue of [18], Lemma 6.3.

Lemma 2.1. Suppose there is a rearrangement of the variables x1, . . . , xs such that λi = 0
for i = 1, . . . , 4 and µ1, . . . , µ4 are not all of the same sign. Then Theorem 2 holds in the
case (d)(i).

Proof. Let σ = 1.43× 10−4 and δ = 1
10

σ. It is easily seen that the main theorem of [3] holds
with the above value of σ, although the result is stated with a slightly smaller exponent.
Thus by condition (a) of Theorem 2, there exist infinitely many (s − 4)-tuples of integers
(a5, . . . , as) such that

∣∣∣λ5a
3
5 + · · ·+ λsa

3
s

∣∣∣ < (max |ai|)−σ. (2.1)

Now put Mi = µi for i = 1, . . . , 4, and put

M5 = µ5a
2
5 + · · ·+ µsa

2
s.

If |M5| < (max |ai|)−δ, then we can take x1 = · · · = x4 = 0 and xi = ai for i = 5, . . . , s.
Otherwise, by the main theorem of [4] we can find (for max |ai| sufficiently large) integers
u1, . . . , u5, not all zero, such that∣∣∣M1u

2
1 + · · ·+ M5u

2
5

∣∣∣ < (max |ai|)−δ (2.2)

and

|M1u
2
1|+ · · ·+ |M5u

2
5| ¿ (max |ai|)δ(4+5δ)|M1 · · ·M5|1+δ.

But M5 ¿ (max |ai|)2, so that

|uj| ¿ (max |ai|)1+ δ
2
(6+5δ) (j = 1, . . . , 4)

and

|u5| ¿ (max |ai|) δ
2
(6+5δ).

Hence on putting x = (u1, . . . , u4, u5a5, . . . , u5as), we have

max |xi| ¿ (max |ai|)1+ δ
2
(6+5δ)

and

|F (x)| < |u5|3(max |ai|)−σ ¿ (max |ai|) 3δ
2

(6+5δ)−σ.

Thus on taking

ε <
2σ − 3δ(6 + 5δ)

2 + δ(6 + 5δ)

we see that for max |ai| sufficiently large one has

|F (x)| < (max |xi|)−ε,

and so we may take σ1 = 1.429× 10−5. Moreover, on taking

γ <
2δ

2 + δ(6 + 5δ)

we have

|G(x)| < (max |ai|)−δ < (max |xi|)−γ
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for max |ai| sufficiently large, so we may take σ2 = 1.429× 10−5.

When the hypothesis of Lemma 2.1 is not satisfied, we need some additional control over
the solution to our cubic inequality (2.1) in order to guarantee that the quadratic in (2.2) is
indefinite. Specifically, we require the following analogue of [18], Lemma 6.4.

Lemma 2.2. Let λ1, . . . , λt (t ≥ 7) be non-zero real numbers, and suppose that (η1, . . . , ηt)
is a real solution of the equation

λ1x
3
1 + · · ·+ λtx

3
t = 0

with 0 < ηi < 1 for all i. Then for any α ∈ (0, 1) and P > P0(η,λ, α), there exist integers
y1, . . . , yt such that

|λ1y
3
1 + · · ·+ λty

3
t | < (max |yi|)−σ,

where σ = 1.43× 10−4 and

(1− α)ηiP < yi ≤ (1 + α)ηiP (i = 1, . . . , t). (2.3)

Proof. If the λi are all in rational ratio, then the result follows from Lemma 6.4 of [18].
Otherwise, we follow through the analysis of [3], restricting the ranges of summation on the
generating functions so that only values of the variables satisfying (2.3) are included. All of
the required estimates continue to hold, with only the major arc analysis requiring a slight
modification.

Now we can complete the proof of case (d)(i) by arguing as in [18], Lemma 6.5. Suppose
that at least 4 of the λi are zero, and rearrange variables so that λ1, . . . , λt 6= 0 and λi = 0 for
i = t+1, . . . , s. By condition (c) and the argument of [18, Lemma 6.2], we may assume that
the equations F (x) = G(x) = 0 have a real solution (η1, . . . , ηs) with all of the ηi non-zero,
and then on replacing λi by −λi if necessary and using homogeneity we may assume that
0 < ηi < 1

2
for all i. Further, by Lemma 2.1, we may assume that µt+1, . . . , µs are all positive,

so that

µ1η
2
1 + · · ·+ µtη

2
t = −(µt+1η

2
t+1 + · · ·+ µsη

2
s) = −C < 0.

Let α, P, and (y1, . . . , yt) be as in Lemma 2.2 with

α <
2C

3t
(max |µi|)−1 ,

and put M = µ1y
2
1 + · · ·+ µty

2
t . Then

|M + CP 2| ≤ P 2(α2 + 2α)
∑

1≤i≤t

|µiη
2
i | <

1

2
CP 2,

so that

M < −1

2
CP 2 < 0.

Now let δ = 1.43 × 10−5 as before. If |M | < P−δ, then we can take xi = yi for i = 1, . . . , t
and xt+1 = · · · = xs = 0. Otherwise, for P sufficiently large, we may use the result of [4] as
in the proof of Lemma 2.1 to find integers vt, . . . , vs, not all zero, with

|vt| ¿ P
δ
2
(6+5δ) and |vi| ¿ P 1+ δ

2
(6+5δ) (i = t + 1, . . . , s)
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such that

|Mv2
t + µt+1v

2
t+1 + · · ·+ µsv

2
s | < P−δ.

Proceeding exactly as in the proof of Lemma 2.1, we find that

x = (y1vt, . . . , ytvt, vt+1, . . . , vs)

satisfies (1.1) with σ1 = σ2 = 10−5, and this completes the proof of Theorem 2 in the case
(d)(i).

The case (d)(ii) of Theorem 2 follows immediately from the results of [3], and this completes
the proof of the theorem.

We now investigate the possibility of reducing the number of zero coefficients required by
condition (d)(ii) from 7 to 6, in accordance with [18] and [20]. Brüdern [7], improving on a
result of Pitman and Ridout [14], has shown that if λ1, . . . , λ9 are real numbers with |λi| ≥ 1
for all i then there exist integers x1, . . . , x9 satisfying

|λ1x
3
1 + · · ·+ λ9x

3
9| < 1

and

0 <
9∑

i=1

|λix
3
i | ¿δ |λ1 · · ·λ9|1+δ. (2.4)

Unfortunately, in order to use this result in an argument like the one in Lemma 2.1 we would
have to assume that G(x) had at least eight zero coefficients, and in this situation we would
do better to apply the results of [6]. Suppose, however, that the above result held with 7
variables instead of 9. Then condition (d)(ii) of Theorem 2 could be replaced by

(d)(ii)′ at least 6 of the µi are zero and max(σ1, σ2) ≤ 10−2.

The argument resembles the one above, but an argument like the one ensuing from Lemma
2.2 will not be necessary since the quadratic under consideration there will be replaced by a
cubic.

Proceeding just as in Lemma 2.1, we fix σ < 1/10 and δ = 1/70. After rearranging
variables, we may assume that µ1 = · · · = µ6 = 0. Now by condition (b) of Theorem 2 and
an easily obtained quantitative version of the classical Davenport-Heilbronn Theorem, we
see that there exist infinitely many (s− 6)-tuples of integers (a7, . . . , as) such that

∣∣∣µ7a
2
7 + · · ·+ µsa

2
s

∣∣∣ < (max |ai|)−σ.

Now put Λi = λi for i = 1, . . . , 6, and put

Λ7 = λ7a
3
7 + · · ·+ λsa

3
s.

If |Λ7| < (max |ai|)−δ, then we can take x1 = · · · = x6 = 0 and xi = ai for i = 7, . . . , s.
Otherwise, by our hypothesis, we can find (for max |ai| sufficiently large) integers u1, . . . , u7,
not all zero, such that

∣∣∣Λ1u
3
1 + · · ·+ Λ7u

3
7

∣∣∣ < (max |ai|)−δ

and

|Λ1u
3
1|+ · · ·+ |Λ7u

3
7| ¿ (max |ai|)δ(6+7δ)|Λ1 · · ·Λ7|1+δ.
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But Λ7 ¿ (max |ai|)3, so that

|uj| ¿ (max |ai|)1+ δ
3
(9+7δ) (j = 1, . . . , 6)

and

|u7| ¿ (max |ai|) δ
3
(9+7δ).

Hence on putting x = (u1, . . . , u6, u7a7, . . . , u7as), we have

max |xi| ¿ (max |ai|)1+ δ
3
(9+7δ),

so on taking

γ <
3δ

3 + δ(9 + 7δ)

we have

|F (x)| < (max |ai|)−δ < (max |xi|)−γ.

Furthermore, if

ε <
3σ − 2δ(9 + 7δ)

3 + δ(9 + 7δ)

then we have

|G(x)| < |u7|2(max |ai|)−σ ¿ (max |ai|) 2δ
3

(9+7δ)2−σ,

whence for max |ai| sufficiently large

|G(x)| < (max |xi|)−ε.

Thus we may take σ1 = σ2 = 1.2× 10−2.

We note that throughout our arguments there is some freedom in the choice of the para-
meter δ, and we have generally chosen it so as to give roughly the same permissible values
for σ1 and σ2. If so desired, one can alter δ in favor of one exponent or the other and in
fact obtain a region of permissible values similar in shape to (but smaller than) the region
in Theorem 1(d). We do not pursue this refinement here.

3. The Davenport-Heilbronn Method

We now set up a two-dimensional version of the Davenport-Heilbronn method which we
will use to prove Theorem 1. We may assume (after rearranging variables) that the the first
m of the µi are zero, that the last n of the λi are zero, and that the remaining h = s−m−n
indices have both λi and µi nonzero. Then when s ≥ 13 we have by conditions (a) and (b)
of Theorem 1 that

0 ≤ m ≤ 5, 0 ≤ n ≤ 4, and h ≥ 4. (3.1)

Furthermore, we may suppose that λI/λJ and µI/µJ are algebraic irrationals, where

I = m + h− 2, J = m + h− 1, and K = m + h.

Let ε be a small positive number, and choose η > 0 sufficiently small in terms of ε. Take P
to be a large positive number, put R = P η, and let

A(P, R) = {n ∈ [1, P ] ∩ Z : p|n, p prime ⇒ p ≤ R}.
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Write α = (α, β), and define generating functions

Fi(α) =
∑

1≤x≤P

e(λiαx3 + µiβx2) (3.2)

and

fi(α) =
∑

x∈A(P,R)

e(λiαx3 + µiβx2). (3.3)

It will also be convenient to write

gi(α) = fi(α, 0) and Hi(β) = Fi(0, β).

According to Davenport [10], for every integer r there exists a real-valued even kernel function
K of one real variable such that

K(α) ¿ min(1, |α|−r) (3.4)

and

∫ ∞

−∞
e(αt)K(α)dα





= 0, if |t| ≥ 1,

∈ [0, 1], if |t| ≤ 1,

= 1, if |t| ≤ 1
3
.

(3.5)

We set

K(α) = K(αP−σ1)K(βP−σ2).

Now let N(P ) be the number of solutions of (1.1) with

xi ∈ A(P,R) (i = 1, . . . , m + h− 3)

and

1 ≤ xi ≤ P (i = m + h− 2, . . . , s).

By a familiar argument, N(P ) is bounded below by P−σ1−σ2R(P ), where

R(P ) =
∫ ∞

−∞

∫ ∞

−∞
F(α)G(α)H(α)K(α) dα, (3.6)

F(α) =
m+h−3∏

i=1

fi(α), H(α) =
m+h∏

i=m+h−2

Fi(α), and G(α) =
s∏

i=m+h+1

Fi(α).

We dissect the plane into three main regions, imitating the standard dissection of the real
line used in the treatment of a single inequality. The trivial region is defined by

t = {α : |α| > P σ1+ε or |β| > P σ2+ε}, (3.7)

the major arc by

M = {α : |α| ≤ P−9/4 and |β| ≤ P−5/4}, (3.8)

and the minor arcs by

m = R2 \ (t ∪M). (3.9)

Our plan is to show that R(P ) À P s−5, with the main contribution coming from the major
arc. For r sufficiently large in terms of ε, it follows easily from (3.4) and (3.7) that the
contribution to R(P ) from the trivial region is o(P s−5). In the next section, we consider a
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finer dissection of the minor arcs which allows us to show that their contribution to R(P )
is also o(P s−5), provided that σ1 and σ2 are confined to the region specified in Theorem 1.
Finally, in Section 5, we apply standard methods to deal with the major arc.

4. The Minor Arcs

We begin by bounding the integral (3.6) in terms of others having somewhat more standard
forms. We start by choosing a finite covering of m by unit squares of the form [c, c + 1] ×
[d, d + 1]. For n ⊂ m, let Un denote the square for which the integral

∫∫

n∩Un

|F(α)G(α)H(α)| dα

is maximal, and write n∗ = n ∩ Un. Then for r > 1 it follows from (3.4) that
∫∫

n

|F(α)G(α)H(α)K(α)| dα ¿ P σ1+σ2

∫∫

n∗
|F(α)G(α)H(α)| dα. (4.1)

Furthermore, by arguing as in the proof of Lemma 7.3 of Wooley [18], we see that
∫∫

n∗
|F(α)G(α)| dα ¿

∫∫

n∗
|fi(α)|h−3 |gj(α)|m |Hk(β)|n dα (4.2)

for some i, j, and k (depending on n) satisfying

m + 1 ≤ i ≤ m + h, 1 ≤ j ≤ m, and m + h + 1 ≤ k ≤ s.

In the course of an argument in which n is fixed, we will employ the abbreviations

f = |fi(α)|, g = |gj(α)|, and H = |Hk(β)|.
Finally, on recalling (3.1) and again mimicking the arguments of [18], we obtain

fh−3gmHn ¿ P s−13
(
f 10 + fuH10−u + guH10−u + f 10−ugu

)
(4.3)

whenever 5 ≤ u ≤ 6. For convenience, we introduce the notation

Q = P s−13+σ1+σ2 . (4.4)

We are now in a position to make use of certain mean value estimates developed in Wooley
[18], [20]. Those which we need are recorded for reference in the following lemma.

Lemma 4.1. Suppose that

m + 1 ≤ i ≤ m + h, 1 ≤ j ≤ m, and m + h + 1 ≤ k ≤ s.

Then for any unit square U = [c, c + 1]× [d, d + 1], we have

(i)
∫∫
U
|fi(α)|10 dα ¿ P 17/3+ε,

(ii)
∫∫
U
|fi(α)|6 |Hk(β)|4 dα ¿ P 21/4+ε,

(iii)
∫∫
U
|gj(α)|6 |Hk(β)|4 dα ¿ P 21/4+ε,

(iv)
∫∫
U
|fi(α)|4 |gj(α)|6 dα ¿ P 21/4+ε,

(v)
∫∫
U
|fi(α)|14 dα ¿ P 9,
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(vi)
∫∫
U
|fi(α)|8 |Hk(β)|5 dα ¿ P 8,

(vii)
∫∫
U
|gj(α)|8 |Hk(β)|5 dα ¿ P 8,

(viii)
∫∫
U
|fi(α)|6 |gj(α)|8 dα ¿ P 9.

Proof. Part (i) follows from Theorem 2 of Wooley [20] on considering the underlying Dio-
phantine equations and making a change of variables. Parts (iii), (v), and (vii) follow from
the corresponding parts of Lemmata 7.2, 9.1, and 9.4 of Wooley [18] on making a change of
variables and noting that the additional restrictions imposed on the variable ranges in that
paper can be removed without affecting the arguments. For the remaining parts, we use the
idea of the proof of Lemma 9.1(i) of [18] in a manner typified by (ii): Write

sm(x,y) = (xm
1 − ym

1 ) + (xm
2 − ym

2 ) + (xm
3 − ym

3 )

and

H(β) =
∑

1≤x≤P

e(βx2).

Then on making the change of variables α′ = λiα and β′ = µkβ we have
∫∫

U
|fi(α)|6 |Hk(β)|4 dα ¿

∫∫

U ′

∑
x,y

e

(
s3(x,y)α +

µi

µk

s2(x,y)β

)
|H(β)|4 dα dβ,

where the summation is over x and y with xi, yi ∈ A(P, R) and where U ′ = [m3, n3]×[m2, n2]
for some integers mj and nj with nj −mj ¿ 1. If we now let

c(x,y) = e

(
µi

µk

s2(x,y)β

)
,

then since c(x,y) is unimodular we obtain
∫∫

U
|fi(α)|6 |Hk(β)|4 dα ¿

∫ n2

m2

(∑
x,y

c(x,y)
∫ n3

m3

e(s3(x,y)α)dα

)
|H(β)|4 dβ

¿ P 13/4+ε
∫ 1

0
|H(β)|4 dβ ¿ P 21/4+ε

on using Theorem 4.4 of Vaughan [16] and considering the underlying Diophantine equations.

Lemma 4.1 allows us to handle regions of m on which H is suitably bounded. Fortunately,
when FI , FJ , or FK is large, we also obtain a great deal of information from a theorem of
Baker [2], a special case of which is recorded below.

Lemma 4.2. Let P > P0(ε) and A > P 3/4+ε. If |Fi(α)| ≥ A for some i = I, J, or K, then
there exists a natural number q < P 3+εA−3 and integers a and b with (q, a, b) = 1 such that
|λiαq − a| < P εA−3 and |µiβq − b| < P 1+εA−3.

Proof. This is Theorem 5.1 of [2] with T = P 3/4+ε, M = 1, and k = 3.

Lemma 4.2 suggests further dissecting m according to the behavior of FI , FJ , and FK .
Thus we start by defining

e = {α ∈ m : |Fi(α)| ≤ P 3/4+ε for i = I, J,K}.
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Now let

f(I) = {α ∈ m : |FI(α)| > P 3/4+ε, max(|FJ(α)| , |FK(α)|) ≤ P 3/4+ε},
define f(J) and f(K) likewise, and put

f = f(I) ∪ f(J) ∪ f(K).

Similarly, let

g(I) = {α ∈ m : |FI(α)| ≤ P 3/4+ε, min(|FJ(α)| , |FK(α)|) > P 3/4+ε},
define g(J) and g(K) likewise, and put

g = g(I) ∪ g(J) ∪ g(K).

Finally, define

h = {α ∈ m : |Fi(α)| > P 3/4+ε for i = I, J,K}.
The set e can be handled quite easily. Using (4.1)–(4.4) and Lemma 4.1, we obtain

∫∫

e

|FGHK| dα ¿ Q
(
P 3/4+ε

)3
∫∫

Ue

(
f 10 + f 6H4 + g6H4 + f 4g6

)
dα

¿ P s−13+σ1+σ2+9/4+3ε
(
P 17/3+ε + P 21/4+ε

)

= o(P s−5),

provided that σ1 + σ2 < 1/12, since ε can be chosen arbitrarily small.
The rational approximations provided by Lemma 4.2 allow us to incorporate major arc

techniques along the lines of Brüdern [5] and [6] in dealing with the sets f, g, and h. For this
we require some additional definitions and lemmata. Define

M(q, a, b) = {α ∈ [0, 1]2 : |qα− a| < P−9/4 and |qβ − b| < P−5/4},

M =
⋃

0≤a,b≤q<P 3/4

(q,a,b)=1

M(q, a, b),

S(q, a, b) =
q∑

x=1

e

(
ax3 + bx2

q

)
,

and

S∗t (q) =
∑

1≤a,b≤q
(q,a,b)=1

∣∣∣q−1S(q, a, b)
∣∣∣
t
.

Lemma 4.3. For t > 6, we have
∑

q≤X

S∗t (q) ¿ 1.
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Proof. Using Lemma 10.4 of Wooley [18] and proceeding as in Lemma 2.11 of Vaughan [17],
one sees that S∗t (q) is multiplicative, so

∑

q≤X

S∗t (q) ≤
∏
p

(
1 +

∞∑

h=1

S∗t (p
h)

)
. (4.5)

Whenever (ph, a, b) = 1, we have

S(ph, a, b) ¿ p2h/3+ε

by Theorem 7.1 of Vaughan [17], but in the case that (b, p) = 1 it follows from Theorem 1
of Loxton and Vaughan [11] that in fact

S(ph, a, b) ¿ ph/2.

Thus we have

S∗t (p
h) = p−ht

∑

1≤a,b≤ph

(p,b)=1

∣∣∣S(ph, a, b)
∣∣∣
t
+ p−ht

∑

1≤a,b≤ph

(ph,a,b)=1
(p,b)>1

∣∣∣S(ph, a, b)
∣∣∣
t

¿ p−ht
(
p2h+ht/2 + p2h−1+2ht/3+tε

)
,

whence for t > 6 we have
∞∑

h=1

S∗t (p
h) ¿ p−1−δ

for some δ > 0, and the result now follows immediately from (4.5).

Write

F (α) =
∑

1≤x≤P

e(αx3 + βx2) (4.6)

and

v(α) =
∫ P

0
e(αγ3 + βγ2) dγ. (4.7)

The following lemma provides a useful refinement of [18], Lemma 9.2.

Lemma 4.4. For t > 6, we have
∫∫

M
|F (α)|t dα ¿ P t−5.

Proof. When α ∈M(q, a, b), write ξ = (ξ3, ξ2) = (α− a/q, β − b/q) and

V (α) = V (α; q, a, b) = q−1S(q, a, b)v(ξ).

Then for α ∈M(q, a, b) we have by Lemma 4.4 of Baker [2] that

F (α) = V (α) + O(q2/3+ε).

Hence if M1 denotes the subset of M on which |V (α)| ≤ q2/3+ε, then we have
∫∫

M1

|F (α)|t dα ¿ ∑

q≤P 3/4

(q2/3+ε)tP−7/2 ¿ P t−5,
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provided that t > 9/2. For α ∈ M2 = M \M1, we have |V (α)| > q2/3+ε and hence
|F (α)| ¿ |V (α)|. Moreover, by Theorem 7.3 of Vaughan [17], we have

v(ξ) ¿ P (1 + P 2|ξ2|+ P 3|ξ3|)−1/3 ¿ P (1 + P 2|ξ2|)−1/6(1 + P 3|ξ3|)−1/6,

and on combining this with Lemma 4.3 we obtain
∫∫

M
|V (α)|tdα ¿ P t−5

∑

q≤P 3/4

S∗t (q) ¿ P t−5

whenever t > 6. Thus we have
∫∫

M2

|F (α)|tdα ¿ P t−5

for t > 6, and this completes the proof.

The sets f and g can now be handled with little difficulty by applying major arc treatments
to one or two of the variables. The key observation is that Baker’s Theorem (Lemma 4.2)
allows us to bound an integral of |Fi(α)|t over f(i)∗ or g(j)∗ (j 6= i) in terms of the integral
considered in the previous lemma.

Using (4.1)–(4.4) as on e, we obtain for some i = I, J, or K that
∫∫

f

|FGHK| dα ¿ Q
(
P 3/4+ε

)2
∫∫

f(i)∗

|Fi|
(
f 10 + f 6H4 + g6H4 + f 4g6

)
dα.

Then by Hölder’s inequality we have

∫∫

f(i)∗

|Fi| f 10dα ¿



∫∫

f(i)∗

|Fi|7 dα




1/7 


∫∫

Uf

f 10dα




1/2 


∫∫

Uf

f 14dα




5/14

,

and by Lemma 4.1 we have
∫∫

f(i)∗

|Fi|
(
f 6H4 + g6H4 + f 4g6

)
dα ¿ P 25/4+ε.

Hence on using Lemmata 4.1, 4.2, and 4.4, together with a change of variables, we find that
∫∫

f

|FGHK| dα ¿ P s−13+σ1+σ2+3/2+2ε
(
P 19/3+ε + P 25/4+ε

)
= o(P s−5),

provided that σ1 + σ2 < 1/6.
Proceeding similarly but instead taking u = 40/7 in (4.3), we have for some i 6= j among

I, J, and K that
∫∫

g

|FGHK| dα ¿ QP 3/4+ε
∫∫

g(i)∗

|Fj|2
(
f 10 + f

40
7 H

30
7 + g

40
7 H

30
7 + f

30
7 g

40
7

)
dα

¿ QP 3/4+ε




∫∫

g(i)∗

|Fj|7 dα




2/7
(
I5/7

1 + I5/7
2 + I5/7

3 + I5/7
4

)
,
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where

I1 =
∫∫

Ug

f 14dα, I2 =
∫∫

Ug

f 8H6dα,

I3 =
∫∫

Ug

g8H6dα, I4 =
∫∫

Ug

f 6g8dα.

Thus we have ∫∫

g

|FGHK| dα ¿ P s−13+σ1+σ2+3/4+ε
(
P 7

)
= o(P s−5),

provided that σ1 + σ2 < 1/4.
The set h is somewhat more difficult to deal with, and it is here that we make use of

the hypothesis that λI/λJ and µI/µJ are algebraic irrationals. We divide h into two main
components,

h1 = {α ∈ h : |α| ≥ P−9/4+ε} and h2 = h \ h1,

and we further subdivide h∗1 and h∗2 into O ((log P )2) dyadic subsets of the form

hi(A,B) = {α ∈ h∗i : A < |FI(α)| ≤ 2A, B < |FJ(α)| ≤ 2B}.
We also write

h(A,B) = h1(A,B) ∪ h2(A,B).

We now use a method introduced by Baker [1] to give an upper bound for the Lebesgue
measure of hi(A,B). If α ∈ h(A,B), then by Lemma 4.2 there exist natural numbers

qI < P 3+εA−3, qJ < P 3+εB−3, qK < P 3/4 (4.8)

and integers ai, bi with (qi, ai, bi) = 1 for i = I, J,K such that

|λIαqI − aI | < P εA−3, |µIβqI − bI | < P 1+εA−3; (4.9)

|λJαqJ − aJ | < P εB−3, |µJβqJ − bJ | < P 1+εB−3; (4.10)

and

|λKαqK − aK | < P−9/4, |µKβqK − bK | < P−5/4. (4.11)

Notice that the inequalities (4.9) and (4.10) restrict α to lie in a box BI about the point
(aI/(λIqI), bI/(µIqI)) with

meas(BI) ¿ q−2
I P 1+2εA−6 (4.12)

and at the same time in a box BJ about (aJ/(λJqJ), bJ/(µJqJ)) with

meas(BJ) ¿ q−2
J P 1+2εB−6. (4.13)

We first obtain a lower bound for qIqJ . As in the proof of Lemma 11.1 of Vaughan [17], it
follows from (4.9) and (4.10) that for α ∈ h1 we have

∣∣∣∣∣
λI

λJ

− aIqJ

aJqI

∣∣∣∣∣ ¿ P−9/4,
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whereas by a well-known theorem of Roth [15] we have
∣∣∣∣∣
λI

λJ

− aIqJ

aJqI

∣∣∣∣∣ À
1

|aJqI |2+ε
,

so that |aJqI | À P 9/8−ε. Similarly, for α ∈ h2 we have

1

|bJqI |2+ε
¿

∣∣∣∣∣
µI

µJ

− bIqJ

bJqI

∣∣∣∣∣ ¿ P−5/4,

and hence |bJqI | À P 5/8−ε. Thus on using (4.9) and (4.10) and recalling the definitions
(3.7)–(3.9) we obtain

qIqJ À




P 9/8−σ1−2ε, if α ∈ h1

P 5/8−σ2−2ε, if α ∈ h2.
(4.14)

Next we observe that when α ∈ h1(A, B) there are O(P 9+3εA−9) corresponding triples
(qI , aI , bI) satisfying (4.8) and (4.9). Alternatively, there are O(P 9+3εB−9) triples (qJ , aJ , bJ)
satisfying (4.8) and (4.10). On combining this with (4.12), (4.13), and (4.14) we obtain

meas(h1(A,B)) ¿ P 71/8+σ1+7ε(AB)−15/2. (4.15)

When α ∈ h2(A,B) we necessarily have aI = aJ = 0 for P sufficiently large, so proceeding
as above gives

meas(h2(A,B)) ¿ P 51/8+σ2+6ε(AB)−6. (4.16)

On applying Hölder’s inequality and Lemma 4.1 as before and writing L = (log P )2, we
find that for some A and B∫∫

h1

|FGHK| dα ¿ QL
∫∫

h1(A,B)

|FIFJFK |
(
f 10 + f

40
7 H

30
7 + g

40
7 H

30
7 + f

30
7 g

40
7

)
dα

¿ QP ε




∫∫

h∗1

|FK |
105
16 dα




16
105




∫∫

h1(A,B)

|FIFJ |
15
2 dα




2
15 (

P 9
) 5

7 .

Thus by (4.15) and Lemma 4.4 we have
∫∫

h1

|FGHK| dα ¿ P s−13+ 45
7

+ 5
21

+ 2
15

( 71
8

)+ 17
15

σ1+σ2+2ε = o(P s−5),

provided that 17
15

σ1 + σ2 < 3
20

.
Since h2 is a thin strip along the β-axis, we save a factor of P σ1 in the analysis leading

to (4.1), but the treatment is otherwise similar to the above. On writing Q′ = P s−13+σ2 , we
have ∫∫

h2

|FGHK| dα ¿ Q′L
∫∫

h2(A,B)

|FIFJFK |
(
f 10 + f

40
7 H

30
7 + g

40
7 H

30
7 + f

30
7 g

40
7

)
dα

¿ P s−13+σ2+ε




∫∫

h∗2

|FK |
42
5 dα




5
42




∫∫

h2(A,B)

|FIFJ |6 dα




1
6 (

P 9
) 5

7 ,
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whence by (4.16) we obtain
∫∫

h2

|FGHK| dα ¿ P s−13+ 45
7

+ 17
42

+ 1
6
( 51

8
)+ 7

6
σ2+2ε = o(P s−5),

provided that 7
6
σ2 < 5

48
. It is easily seen that these last two inequalities are less restrictive

than the one appearing in condition (d) of Theorem 1.

5. The Major Arc

As it stands, the major arc M is too large to allow satisfactory approximation of the
exponential sums fi(α), so we must do some pruning. Specifically, let W be a parameter at
our disposal, and let

N = {α : |α| ≤ WP−3 and |β| ≤ WP−2}. (5.1)

Then as in Lemma 9.2 of Wooley [18], we have for t > 9 that
∫∫

M\N
|Fi(α)|t dα ¿ W−σP t−5

for i = I, J,K and some σ > 0. Thus by using (4.3) and Lemma 4.1 as in the treatment of
g and h in the previous section, we have for some i = I, J, or K that

∫∫

M\N
|FGHK| dα ¿ P s−13




∫∫

M\N
|Fi(α)|21/2 dα




2/7

P 45/7

¿ P s−5W−σ′ .

It remains to deal with the pruned major arc N. Let

vi(α) =
∫ P

0
e(λiαγ3 + µiβγ2) dγ (5.2)

and

wi(α) =
∫ P

R
ρ

(
log γ

log R

)
e(λiαγ3 + µiβγ2) dγ, (5.3)

where ρ(x) is Dickman’s function (see Vaughan [17], chapter 12). Then for α ∈ N, we obtain
from Theorem 7.2 of [17] that

Fi(α) = vi(α) + O(W )

and from Lemma 8.5 of [18] that

fi(α) = wi(α) + O(WP/ log P ).

Now on taking W = (log P )1/4 it follows that

∫∫

N

FGHK dα =
∫∫

N

(
m+h−3∏

i=1

wi(α)

) 


s∏

i=m+h−2

vi(α)


K(α) dα + O(P s−5W−1).
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Furthermore, we may extend the integration over all of R2, as the bounds for vi and wi

contained in Lemma 8.6 of [18] imply that

∫∫

R2\N

(
m+h−3∏

i=1

wi(α)

) 


s∏

i=m+h−2

vi(α)


K(α) dα ¿ P s−5W−1.

Thus it remains to show that the singular integral

J =
∫ ∞

−∞

∫ ∞

−∞

(
m+h−3∏

i=1

wi(α)

) 


s∏

i=m+h−2

vi(α)


K(α) dα

satisfies J À P s−5. Multiplying out, we have

J =
∫ ∞

−∞

∫ ∞

−∞

∫

B∗
T ∗(γ) e(F (γ)α + G(γ)β) K(αP−σ1)K(βP−σ2) dγ dα dβ,

where

B∗ = [R, P ]m+h−3 × [0, P ]n+3

and

T ∗(γ) =
m+h−3∏

i=1

ρ

(
log γi

log R

)
.

On making the change of variables

γ ′ = γP−1, α′ = αP−σ1 , β′ = βP−σ2

and applying Fubini’s Theorem, we obtain

J = P s+σ1+σ2

∫

B
T (γ) K̂(F (γ)P 3+σ1)K̂(G(γ)P 2+σ2) dγ, (5.4)

where we have written

B = P−1B∗, T (γ) = T ∗(Pγ),

and

K̂(t) =
∫ ∞

−∞
e(αt)K(α)dα.

Now by condition (c) of Theorem 1 and the argument of Lemma 6.2 of Wooley [18], we
can find a non-singular solution η to the equations F = G = 0 such that each ηi is non-zero.
Then, after replacing λi by −λi if necessary and using homogeneity, we may assume that
η ∈ (0, 1)s and hence that η lies in the interior of B when P is sufficiently large. Suppose
that 6ηjηk(λjµkηj − λkµjηk) 6= 0, and consider the map φ : Rs → Rs defined by

φj = F (γ), φk = G(γ), and φi = γi (i 6= j, k). (5.5)

By the inverse function theorem, there exist neighborhoods U of η and V of φ(η) such that
φ maps U injectively onto V , and we may assume that U ⊂ B. Now by (3.5) and the
nonnegativity of ρ, the integrand in (5.4) is nonnegative, so we may restrict the integration
over γ to the set U . Then on writing z = φ(γ), where φ is as in (5.5), we have by the change
of variables theorem that

J ≥ P s+σ1+σ2

∫

V
T (φ−1(z))K̂(zjP

3+σ1)K̂(zkP
2+σ2)

∣∣∣∣∣
dγ

dz

∣∣∣∣∣ dz. (5.6)
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Since meas(V ) À 1, the projection of V onto zj contains the interval [0, 1
3
P−3−σ1 ], and the

projection of V onto zk contains the interval [0, 1
3
P−2−σ2 ], provided that P is sufficiently

large. Hence on restricting the range of integration in (5.6) and using (3.5) again, we obtain

J À P s+σ1+σ2

∫

S
T (φ−1(z))dz,

where meas(S) À P−5−σ1−σ2 . Finally, on noting that T (γ) À ρ(1/η)m+h−3 À 1 for γ ∈ B,
we obtain J À P s−5 as required. This completes the proof of Theorem 1.

6. A Discussion of the Conditions in Theorems 1 and 2

Here we discuss the possibility of weakening some of the conditions imposed on the forms
F and G in Theorems 1 and 2. In view of the discussion of Wooley [18], §5, where it is
shown that many conditions similar to ours are essentially best possible for the corresponding
problem on equations, our observations will leave something to be desired. Nevertheless, we
can show that at least some minimal conditions are necessary to ensure the solubility of
(1.1).

For example, let

F (x) = λ3x3
1 − x3

2 and G(x) = µ2x2
3 − x2

4,

where λ and µ are positive real algebraic of degree 3 and 2, respectively, such that λ3 and
µ2 are irrational. For instance, we may take λ = 1 + 3

√
2 and µ = 1 +

√
2. Then it follows

easily from Liouville’s Theorem that, for sufficiently small τ > 0, neither of the inequalities

|F (x)| < τ, |G(x)| < τ

has a non-trivial solution in rational integers. Of course, this example is easily generalized
to produce forms F1, . . . , Ft of degrees k1, . . . , kt in 2t variables which do not take arbitrarily
small values. Therefore, we must minimally require either s ≥ 5 total variables or at least 3
variables explicit in one of the two forms.

More realistically, in light of [20], Theorem 1, one might hope to be able to prove Theorem
1 with s = 13 but conditions (a) and (b) weakened so that F and G need only have 7 and
5 variables explicit, respectively, rather than 9 and 8. The latter numbers arise from the
inequalities (3.1), on which the analytic argument in Sections 2.3–2.5 depends, but one may
attempt to reduce these in the manner of [18] and [20] by using Theorem 2. Unfortunately,
there are some difficulties with this approach in our situation. If F has exactly 7 or 8 variables
explicit, then we may apply Theorem 2 to solve (1.1), but we must settle for the inferior
values of σ1 and σ2 allowed by condition (d)(i) of that theorem, and we forfeit our estimate
for the density of solutions. Moreover, if G has exactly 7 variables explicit and F has at least
10 variables explicit, then neither Theorem 1 nor Theorem 2 applies with s = 13. To avoid
this difficulty, we may hope to reduce the number of zero coefficients required by condition
(d)(ii) of the latter from 7 to 6, and we saw in Section 2.2 that a conditional result of this
type could be obtained using hypothetical results on small solutions of cubic inequalities in
7 variables.

As mentioned in Section 2.1, condition (b) of Theorem 2 can be eliminated from the
stated version of the theorem, but some form of it is likely to be necessary for any desirable
refinement of (d)(ii). If a quantitative version of the result of Margulis [12] on the Oppenheim
conjecture were available, then we could reduce the 5 to 3 in condition (b) of our hypothetical
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version of Theorem 2, provided we assumed additionally that G is not a multiple of a form
with integer coefficients. However, the methods of [12] do not seem to hold much promise
for obtaining such a result.

We can also investigate the possibility of reducing the total number of variables required.
Although Theorem 1 could conceivably hold with as few as 5 variables, it does not seem
possible for an analytic argument of the flavor given in Sections 2.3–2.5 to be successful with
fewer than 11 variables. In the “ideal” situation that the first four mean values in Lemma 4.1
were bounded by P 5+ε, a simplified version of our analysis would allow us to prove a version
of the theorem for s ≥ 12, possibly with a slightly different range of permissible values for
σ1 and σ2.

Next we note that the existence of a non-trivial real solution to the equations F = G = 0 is
a necessary condition for the system (1.1) to have infinitely many integer solutions. For, if the
latter holds, then for arbitrary τ > 0 we can obtain (by rescaling an integer solution x with
max |xi| sufficiently large) a real solution η(τ) ∈ [−1, 1]s of the inequalities |F | < τ, |G| < τ
such that |ηi| = 1 for some i. But the set

S = {η ∈ [−1, 1]s : |ηi| = 1 for some i}
is compact, whence its image in R2 under the continuous map φ defined by F and G is
compact. Hence φ(S) must contain the limit point (0, 0), which shows that the equations
F = G = 0 have a non-trivial real solution.

Now let p be a prime with p ≡ 1 (mod 3), let c be a cubic nonresidue (mod p), and consider
the forms

F (x) =
√

2x3
1 + x3

2 + · · ·+ x3
7 + (x3

8 + cx3
9) + p(x3

10 + cx3
11) + p2(x3

12 + cx3
13),

G(x) =
√

2x2
1 + x2

2 + · · ·+ x2
7 + x2

8.

It is easily checked that F and G satisfy all the conditions of Theorem 1, except that all real
solutions to the simultaneous equations F = G = 0 are singular. Moreover, the discussion
of example (5.1) in Wooley [18] shows that the simultaneous inequalities

|F (x)| < 1, |G(x)| < 1

have no nontrivial integer solutions. Therefore, condition (c) of Theorem 1 cannot be weak-
ened.

We conclude with some remarks on the assumption regarding algebraic irrational coeffi-
cient ratios in Theorem 1. First of all, if neither F nor G is a multiple of a form with integer
coefficients and all the coefficients of F and G are nonzero, then it is easy to see that there
is a pair of indices i and j such that both λi/λj and µi/µj are irrational. Next, if exactly
one of the forms is a multiple of an integral form and this form has no zero coefficients, then
we can solve the problem by obtaining a lower bound for the integral

R1(P ) =
∫ ∞

−∞

∫ 1

0
F(α)G(α)H(α)K(αP−σ1) dβ dα

or

R2(P ) =
∫ ∞

−∞

∫ 1

0
F(α)G(α)H(α)K(βP−σ2) dα dβ,
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as the case may be, using a simplified version of our analysis, along with techniques from
the one-dimensional Hardy-Littlewood and Davenport-Heilbronn methods. If F and G are
both multiples of integral forms, then we may simply apply the argument of Wooley [20] to
deduce Theorem 1. Thus in particular we observe that if all the coefficients of F and G are
algebraic and nonzero, then no irrationality assumption on the coefficients is needed.

The algebraicity assumption allows us to use Roth’s Theorem in Section 2.4 to obtain the
lower bounds (4.14), which are critical to our analysis of the sets hi(A,B). The preferred
approach to (4.14) would involve restricting P in terms of the denominators of simultaneous
rational approximations λI/λJ ∼ a/q and µI/µJ ∼ b/q and then combining these approxi-
mations with (4.9) and (4.10), in analogy with the proof of [17], Lemma 11.1. However, a
difficulty arises from the possibility that (a, q) or (b, q) may be large, even though we can
ensure that (q, a, b) = 1. It transpires that in this problematic case we can reduce the task
to one of obtaining small solutions to “mixed” systems of the form

|F (x)| < (max |xi|)−σ1 ,
s∑

i=1

bix
2
i = 0

or

|G(x)| < (max |xi|)−σ2 ,
s∑

i=1

aix
3
i = 0,

where the ai and bi are integers. Under suitable conditions, the number of solutions to
these systems can be estimated as described above, using integrals like R1(P ) and R2(P ).
However, in order to obtain bounds for the solutions in terms of the coefficients of the forms,
we must now keep track of constants which were previously left implicit, and this would seem
to require additional information regarding the nature of a real solution to the corresponding
system of equations.
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